ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Functionality of the nanoscopic crystalline Al/amorphous $Al_{50}Ti_{50}$ surface embedded composite observed in the NaAlH₄ + *x*TiCl₃ system after milling

M.P. Pitt^{a,c,*}, P.E. Vullum^b, M.H. Sørby^a, M.P. Sulic^d, H. Emerich^e, M. Paskevicius^c, C.E. Buckley^c, J.C. Walmsley^{b,f}, R. Holmestad^b, B.C. Hauback^a

^a Physics Department, Institute for Energy Technology, P.O. Box 40, Kjeller, NO-2027, Norway

^b Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

^c Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia

^d Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA

^e Swiss-Norwegian Beam Line, European Synchrotron Radiation Facility, BP 220, Grenoble, Cedex, France

^f SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway

ARTICLE INFO

Article history: Received 5 August 2011 Received in revised form 7 November 2011 Accepted 9 November 2011 Available online 25 November 2011

Keywords: Metal hydrides Amorphous materials Transition metal alloys and compounds Gas-solid reactions Synchrotron radiation Neutron diffraction

ABSTRACT

The NaAlH₄ + xTiCl₃ (x < 0.1) system has been studied by a combination of X-ray synchrotron and neutron diffraction, and isotopic H₂/D₂ scrambling after the completion of the milling process, and the first thermal release of hydrogen (H). An in situ X-ray synchrotron diffraction study of the isochronal release of hydrogen from planetary milled (PM) NaAlH₄+0.1TiCl₃ shows that crystalline (c-) Al_{1-x}Ti_x phases do not form until almost all H is released from the sample, demonstrating that the surface embedded nanoscopic crystalline Al/amorphous (a-) Al₅₀Ti₅₀ composite facilitates the release of H during the very first thermal desorption. Planetary milled (PM) NaAlH₄+xTiCl₃ is observed to disproportionate at room temperature, with no NaAlH₄ remaining after ca. 200 days. A complete lack of ambient hydrogen release from PM NaAlH₄ + 0.1Al (80 nm) measured over 200 days suggests that the nanoscopic a-Al₅₀Ti₅₀ phase is entirely responsible for the hydrogen release during thermal desorption of milled NaAlH₄ + xTiCl₃. Isotopic H/D exchange has been observed by combined neutron and X-ray synchrotron diffraction on a PM NaAlD₄ + 0.04TiCl₃ sample, after exposing the milled sample to 20 bar H₂ at 50 °C for ca. 6 days. Under these pressure/temperature (P/T) conditions, disproportionation of NaAlD₄ is avoided, and ca. 32% of D atoms are exchanged with H atoms. Asymmetrically broadened reflections in the synchrotron data show peak splitting into two unit cell types, one expanded with H, the other remaining close to pure D based unit cell dimensions. The 2-phase model when fitted to the neutron data demonstrates that ca. 56% of D atoms in ca. 58% of all unit cells are exchanged with H, yielding a NaAl $(H_{0.56}D_{0.44})_4$ composition for the expanded unit cells. HD scrambling (1 bar mixture of H₂ and D₂ at $23 \,^{\circ}$ C) performed on desorbed H empty PM NaAlH₄+0.1TiCl₃ shows classic $H_2 + D_2 \leftrightarrow 2HD$ equilibrium mixing, demonstrating that nanoscopic Ti containing $Al_{1-x}Ti_x$ surface embedded phases perform a H₂ dissociation/recombination function that unadulterated NaAlH₄ cannot.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The transition metal enhanced NaAlH₄ system currently remains as the prototypical example of obtaining hydrogen reversibility and rapid absorption/desorption hydrogenation kinetics in the complex hydride family. The early transition metals such as Sc [1], Ti [2] and rare earths such as Ce [1,2] have proven to be the most efficient additives for the NaAlH₄ system. Understanding the

E-mail address: mark.pitt@gmail.com (M.P. Pitt).

location and functionality of the transition metal (TM)/rare earth (RE) containing phases is paramount to basic understanding and potentially further engineering other classes of complex hydrides such as the borohydride family [3,4]. Large quantities of hydrogen can be contained in phases such as LiBH₄ and Mg(BH₄)₂, containing 18.5 and 14.9 wt.% H, respectively, but these compounds are greatly hindered as practical hydrogen storage materials by high thermal and kinetic stabilities, and no suitable destabilizing catalysts have been found to date. A common theme among the addition of metal enhancing species to NaAlH₄ is the formation of nanoscopic Al_{1-x}TM_x [5–7] or Al_{1-x}RE_x [2] phases that are embedded on the surface of NaAlH₄ powder grains [8].

In [8], the location of Ti was determined after the completion of the NaAlH₄+xTiCl₃ milling process at short times of ca.

^{*} Corresponding author at: Hydrogen Storage Research Group, Department of Imaging and Applied Physics, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia. Tel.: +61 8 9266 3673; fax: +61 8 9266 2377.

^{0925-8388/\$ –} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.11.045

1 h. It was observed by combinatorial X-ray synchrotron diffraction and transmission electron microscopy (TEM) measurements that Ti was located in a nanoscopic composite of Al nanocrystals immersed in an amorphous Al₅₀Ti₅₀ matrix. This nano composite is embedded on the surface of moderately defected (uncorrelated) single crystals of NaAlH₄. From the study in [5], it is known that nanoscopic crystalline (c-) $Al_{1-x}Ti_x$ phases can be formed from the nano Al/a-Al₅₀Ti₅₀ composite by extended planetary milling (>10 h) producing c-Al₈₀Ti₂₀, isothermal vacuum annealing (at 150°C) producing c-Al₈₈Ti₁₂, isochronal annealing (2°C/min) producing c-Al₈₆Ti₁₄, or from hydrogen (H) cycling (150 bar at 150 °C) yielding c-Al₈₅Ti₁₅. This suggests that at some stage during the very first thermal desorption of hydrogen from milled $NaAlH_4 + xTiCl_3$, the amorphous Al₅₀Ti₅₀ in the nanoscopic Al/a-Al₅₀Ti₅₀ composite must be depleted/transformed to a crystalline $Al_{1-x}Ti_x$ structure. The matching of size ranges from dark field measurements for the nanoscopic Al crystals (2-20 nm) in the Al/a-Al₅₀Ti₅₀ composite in PM NaAlH₄+0.1TiCl₃ compared to the size range of c-Al₈₅Ti₁₅ nanocrystals (4-25 nm) in H cycled NaAlH₄+0.1TiCl₃ from the study in [5] indicates that Ti atoms are sourced from the a-Al₅₀Ti₅₀ matrix, where they locally diffuse into the Al nanocrystals. This process occurs within the nanoscopic Al/a-Al₅₀Ti₅₀ composite on the NaAlH₄ powder grain surface during the very first thermally induced release of H.

It is the aim of this study to determine the temperature that Al nanocrystals are converted to $c-Al_{1-x}Ti_x$ structures, and in doing so demonstrate the temperature range over which the amorphous $Al_{50}Ti_{50}$ may be considered functional in terms of H release. We also utilise isotopic H_2/D_2 scrambling in combination with neutron diffraction to demonstrate that the surface embedded nano $Al/Al_{50}Ti_{50}$ composite is not only capable of molecular H_2 dissociation/recombination, but also promotes bulk diffusion of H within the NaAlH₄ structure.

2. Experimental procedure

NaAlH₄ was purchased from Albermarle Corporation (LOT NO.#: 22470404-01). All halide precursors were purchased from Sigma–Aldrich Chemicals Inc. (>99.99% purity). 80 nm Al (99.9% purity) was obtained from Nanostructured & Amorphous Materials Inc. NaAlD₄ was synthesised in accordance with previously reported wet synthesis of NaAlH₄ [9]. At all times, all powders have been handled under inert Ar or N₂ atmosphere in a dry glove box, with <1 ppm O₂ and H₂O. Milled NaAlH₄ powders (pure and with TiCl3 and Al additive) were prepared in 1g quantities in a Fritsch P7 planetary mill, with ball to powder ratio (bpr) of 20:1, at 750 rpm for a period of 1 h, under glove box atmosphere. Milled powders were taken directly to the beamline after milling for diffraction measurements. HD scrambling studies were performed with a dual focussing high resolution VG Model 70 SE Mass Spectrometer. The instrument was focussed on 4 amu (D₂). Samples were introduced through a stainless steel inlet. Initially with the inlet at a working temperature of 180 °C, a mixture of H_2 and D_2 could be slowly and reproducibly hybridised. As such, the inlet was cooled and head gas samples were prevented from remaining in the inlet for too long a period. Samples were connected from glassware with a double ended 20 gauge needle through a pair of septa. Accelerating voltage was 8000 V. Resolution was set to 800, yielding excellent sensitivity at low AMU. Detection efficiency for H₂ was ca. 7% less than HD. Detection efficiency for HD was ca. 7% less than for D₂. HD measurements were performed typically up to 7 days at ambient temperature. Powder X-ray diffraction data were recorded at the Swiss-Norwegian Beamline (SNBL) at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Samples were contained in rotating 0.8 mm boron-silica glass capillaries. High resolution data $(\Delta d/d \sim 2 \times 10^{-4})$ was typically collected at 295 K between 5 and 35° 2θ , in steps of 0.003–0.030°, depending on the sample broadening. A wavelength of 0.4998 Å was obtained from a channel cut Si (111) monochromator. Medium resolution $(\Delta d/d \sim 3 \times 10^{-3})$ in situ annealing data were collected on a 2-D image plate (MAR345) over the 2θ range 3–34° with step size 0.015° and exposure time of 30 s. A wavelength of 0.7111 Å was used. Powder neutron diffraction data was collected using the PUS diffractometer at the JEEP II reactor at Kjeller, Norway [10]. Monochromated neutrons with $\lambda = 1.5550$ Å were obtained from a Ge (511) focussing monochromator. The detector unit consists of two banks of seven position-sensitive ³He detectors, each covering 20° in 2θ (binned in 0.05° steps). Data was collected in the 2θ range 10–130°. The as synthesised NaAlD₄ and the isotopically D/H exchanged NaAl $(D_{1-x}H_x)_4$ + 0.04TiCl₃ powders were measured in a sealed cyclindrical vanadium sample holder of 5 mm diameter, which was rotated at room temperature. Neutron diffraction patterns were modelled with the Rietveld

Fig. 1. (a) Long term room temperature disproportionation of PM NaAlH₄ + $0.02TiCl_3$ measured up to 196 days, showing an exponential decay in NaAlH₄ phase proportion. (b) Room temperature HD scrambling of PM only NaAlH₄ + $0.1TiCl_3$ measured up to 42 days against a starting pressure of 1 bar D₂.

diffraction analysis software RIETICA [11]. A mixed H/D model in space group $I4_1/a$ was refined for the isotopically D/H exchanged NaAlD(H)₄ structure type. A Voigt profile function was used to separate size and strain contributions to the diffraction line shape. The strong background induced from the presence of H atoms in the structure was modelled with a type I Chebyshev polynomial. X-ray synchrotron diffraction patterns were analysed by the Rietveld method, using RIETICA. Diffraction lineshape profiles were fitted with a full Voigt function, with the instrumental shape determined by a NIST LaB₆ 660a lineshape standard, further annealed to 1800 °C.

3. Results and discussion

In typical 1 h PM NaAlH₄ + xTiCl₃ samples, the conditions on the powder surface after milling are sufficient to allow room temperature desorption of hydrogen from the sample, demonstrated in Fig. 1(a). There is almost complete exponential decay of NaAlH₄ into Na₃AlH₆ and Al after 196 days of storage in an inert atmosphere glove box. It is clear that significant amounts of H are released from the powder bulk where no Ti containing phases are present. This indicates that under ambient conditions, the surface embedded Ti

Fig. 2. (a) Neutron diffraction pattern of as synthesised pure NaAlD₄. Data are represented by open circles, the calculated Rietveld fit by the solid line. The difference profile between the data and the calculated pattern is below. Reflection markers for NaAlD₄ are given by the vertical bars. (b) Neutron diffraction pattern of PM NaAlD₄ + 0.04TiCl₃ after soaking under 20 bar H₂ at 50 °C for ca. 6 days. Reflection markers from top to bottom represent the H expanded phase NaAl(H_{0.56}D_{0.44})₄, NaCl, Al and the remaining unexpanded NaAlD₄ phase.

rich nano $Al/a-Al_{50}Ti_{50}$ composite performs a molecular H_2 recombination function that unadulterated NaAlH₄ cannot, and facilitates the release of H bound in the NaAlH₄ bulk. It is not yet clear if after 196 days, H will begin to be released from Na₃AlH₆.

We have utilised isotopic HD scrambling experiments to confirm that the surface embedded Ti rich nano Al/a-Al₅₀Ti₅₀ composite works in reverse, and also dissociates molecular H₂ and allows atomic H back into the NaAlH₄ structure by allowing H transport across the near surface NaAlH₄/a-Al₅₀Ti₅₀ interface. By near surface, we refer to the NaAlH₄/a-Al₅₀Ti₅₀ interface, which is on average 10 nm below the outer powder grain surface [8]. It is at this interfacial monolayer where Ti atoms may protrude into the NaAlH₄ unit cell, and very locally distort Al–H bonds immediately in the vicinity of the interface. Fig. 1(b) shows a HD scrambling experiment on PM NaAlH₄+0.1TiCl₃, conducted at room temperature under a starting D₂ pressure of 1 bar for 42 days. The starting pressure of 1 bar is above the predicted plateau pressure of ca. 0.5 bar at room temperature, based on an average extrapolation of all known pressure-composition-temperature (PCT) data for Ti enhanced NaAlH₄ [12–15]. Based on equivalent plateau pressures between TiCl₃ enhanced NaAlH₄ and NaAlD₄ at 130 °C in [12],

we assume also that at low temperature, the hydride/deuteride plateau pressures are equivalent to each other. As such, we then expect that disproportionation of NaAlH₄ is avoided under 1 bar D₂ gas pressure. In Fig. 1(b), a clear exponential rise in HD fraction is observed over the first 14 days, after which, the HD fraction can be observed to artefactually decrease as the finite supply of D_2 is consumed. Even after nearly all D_2 is consumed after 42 days, the H₂ fraction does not appear to have plateaued, indicating that some NaAlH₄ decomposition may have occurred to release H. As no isotherms exist for the PCT diagram at room temperature. we must rely on the extrapolation of the van't Hoff function and the assumption of no isotope affect at low temperature. Clearly, the starting pressure of 1 bar D₂ is close to the predicted plateau pressure for NaAlH₄ at ca. 0.5 bar, indicating that HD scrambling should be performed at higher pressure to observe H/D exchange in NaAlH₄.

Such an experiment has been conducted at $50 \,^{\circ}C$ and $20 \,\text{bar}$ of D_2 on milled NaAlH₄+0.04TiCl₃ [16]. At $50 \,^{\circ}C$, the predicted plateau pressure is ca. 1.7 bar, which is well below the 20 bar starting pressure, again suggesting that NaAlH₄ disproportionation will be avoided (and again assuming no significant isotope effect at low

Fig. 3. (a) High resolution X-ray synchrotron diffraction pattern of PM NaAlD₄ + 0.04TiCl₃ after soaking under 20 bar H₂ at 50 °C for ca. 6 days. A single phase calculated fit is shown to demonstrate the artefactual positional misfit. (b) Single phase NaAl($H_{0.325}D_{0.625}$)₄ model showing artefactual positional misfit for the (004) reflection. (c) A 2-phase model fit to the (004) doublet with misfit removed. The model contains 58% H expanded NaAl($H_{0.56}D_{0.44}$)₄ unit cells, and 42% pure NaAlD₄ unit cells.

temperature). In [16], a steep decay in D₂/HD ratio can be observed over an initial period of ca. 33 h, after which the ratio plateaus. In total, 1.3 of the 4 formula units of H of NaAlH₄ are estimated to have exchanged with D, on the basis of 2.13×10^{-2} mol of D atoms recovered at 180 °C after annealing the pre-evacuated sample at the end of the HD scrambling period. It is inferred that bulk exchange of H with D in the NaAlH₄ phase has occurred, without decomposition.

With knowledge of the surface structure from our previous study [8], it is possible to further investigate the nature of this apparently exchanged D. As $Al_{50}Ti_{50}$ is known to absorb hydrogen, the H(D) absorption properties of the surface become relevant. A comprehensive study of the H absorption properties of amorphous and crystalline $Al_{1-x}Ti_x$ alloys demonstrates that $a-Al_{50}Ti_{50}$ and $a-Al_{60}Ti_{40}$ absorb significant quantities of H at room temperature, up to $Al_{60}Ti_{40}H_{21}$ and $Al_{50}Ti_{50}H_{36}$, under 50 bar H₂ pressure [17]. As 96% of the exchanged D was recovered on annealing to 180 °C in [16], only a small fraction of D could possibly be absorbed by the surface embedded $a-Al_{50}Ti_{50}$ phase. This is consistent with the analysis that to store the recovered 2.13×10^{-2} mol of D atoms, 40 times as much H(D) would need to be stored in the $a-Al_{50}Ti_{50}$

phase than is observed experimentally for bulk micron-sized powders [17]. Further, TDS analysis demonstrates an extremely high hydrogen release temperature of >800 K for both a-Al₅₀Ti₅₀H₃₆ and a-Al₆₀Ti₄₀H₂₁ [17], indicating it is highly unlikely that H(D) proceeds through the 5–10 nm thick surface embedded a-Al₅₀Ti₅₀ phase. Rather, atomic H is likely to diffuse along/around the surface of the nanoscopic a-Al₅₀Ti₅₀ phase.

In order to study the distribution of exchanged bulk H observed in [16], we have emulated the experiment in reverse, by studying a deuteride, PM NaAlD₄+0.04TiCl₃, under hydrogen gas, H₂, at 20 bar and 50 °C. We have observed the pre and post exchanged samples by neutron and X-ray synchrotron diffraction. As D and H have opposite sign and differing magnitude neutron scattering lengths, and as H also has a large incoherent scattering cross section, the exchange of D with H in the deuterated bulk will show strong reflection intensity reductions and a strong background increase in a neutron diffraction pattern. Diffraction can also confirm that NaAlH₄ decomposition has been avoided during the H/D exchange, or alternatively verify the presence of H in any Na₃AlD₆ produced. Fig. 2(a and b) shows the dramatic changes in neutron

Fig. 4. In situ isochronal (2°C/min) annealing data in the hydrogen release temperature range 51–228°C from PM NaAlH₄ + 0.1TiCl₃, across the most interesting range of *d*-spacing from 2.28 to 3.10 Å.

diffraction patterns before and after soaking a NaAlD₄ + 0.04TiCl₃ sample under 20 bar H₂ gas at 50 °C for ca. 6 days. Maximum Bragg reflected intensity of the NaAlD₄ phase is reduced to ca. 13% of the starting magnitude, and the incoherent background structure is more than doubled. A minor instrumental reflection is observed at 31.18° in the pure NaAlD₄ sample, which is excluded from the refinement in Fig. 2(b). The reflection markers from top to bottom in Fig. 2(b) represent the H expanded NaAlD₄ phase, NaCl, Al and the remaining unexpanded NaAlD₄ phase. No Na₃Al{ $D_{1-x}H_x$ }₆ or Na₃AlD₆ phase is evident, demonstrating that H is exchanged only with the NaAlD₄ phase, and no disproportionation occurs, which is consistent with the equilibrium plateau pressure for the NaAl{ $D_{1-x}H_x$ } phase being well below 20 bar at 50 °C. Initially, a single phase mixed NaAl $\{D_{1-x}H_x\}_4$ model was fitted to the neutron data, with the best fit yielding ca. 32.5% occupancy of H, in excellent agreement with [16], where 1.3 out of the 4 formula units of H were exchanged with D. Although a statistically satisfactory fit to the neutron data was obtained with the single phase model, one experimental reflection remains almost completely underfitted by the calculated model (200) (at $2\theta = 36.18^{\circ}$). High resolution X-ray synchrotron data of the D/H exchanged sample provided the information necessary to produce calculated intensity in the (200) reflection. Fig. 3(a) shows the X-ray synchrotron diffraction pattern of the D/H exchanged sample with a single phase model fitted. Positional misfit is apparent everywhere in the difference profile, and on close inspection, strong leading edge, high *d*-spacing asymmetry is evident on every reflection, indicating the presence of two tetrahydride phases. Rietveld fitting of the synchrotron data utilised the following methodology: (i) a single phase model was fitted, with unit cell dimensions intermediate between the pure NaAlH₄ and pure NaAlD₄ unit cells, with a = 5.0148 Å and c = 11.3247 Å and χ^2 = 3.122. This model contributes zero intensity to the (200) doublet in the neutron data; (ii) a 2-phase model was fitted, with the remaining un-exchanged NaAlD₄ unit cell constrained at pure NaAlD₄ dimensions, with a = 5.0084 Å and c = 11.3034 Å, and a mixed H/D cell with a = 5.0138 Å and c = 11.3257 Å, yielding a χ^2 = 2.504. When this model is applied to the neutron data, the (200) doublet intensity is ca. (3/4) fitted, and the number of expanded unit cells determined by quantitative phase analysis (QPA) is slightly overestimated at ca. 73%; (iii) a 2-phase model

was fitted, with both the exchanged and un-exchanged unit cell dimensions refined, yielding a = 5.0095 Å and c = 11.3106 Å for the pure NaAlD₄ cell, and a = 5.0163 Å and c = 11.3351 Å for the mixed H/D unit cell, with final χ^2 = 2.059. This model yields an excellent fit to the (200) doublet in the neutron data, with the final number of affected unit cells in the sample standing at ca. 58%, yielding a final mixed H/D unit cell of composition NaAl(H_{0.56}D_{0.44})₄. This final 2-phase model also demonstrates that the mixed H/D cell mechanically dilates the un-exchanged NaAlD₄ cells prismatically by ca. 1%. Fig. 3(b) shows the (004) reflection for the single phase model, and Fig. 3(c) the final 2-phase model, with the artefactual positional misfit removed. Lineshape analysis indicates the mosaic of the exchanged H/D unit cells is ca. 100 nm compared to ca. 250 nm for the un-exchanged cells, demonstrating that large regions of each powder grain have experienced exchange and allowed long ranged H/D diffusion to occur within the NaAlD₄ structure on a depth scale of 100 nm from the surface. Although the NaAl $(H_{0.56}D_{0.44})_4$ composition represents an average measurement, the mixed H:D ratio suggests H and D can be mixed in individual AlD₄ units. A significant fraction of the powder remains un-exchanged, with 42% of all unit cells remaining as pure NaAlD₄, which is likely because the system has reached an equilibrium distribution.

Commensurate with the observation that milled pure NaAlH₄ samples have produced spectral features in infra red and NMR data [18,19] indicating perturbed Al–H bonds, we have also studied a milled only pure NaAlH₄ sample (no additive) with HD scrambling. We observe a 10% rise in HD fraction over 7 days for NaAlH₄ under a 1 bar H₂/D₂ mixture, considerably less HD than that observed for TiCl₃ enhanced NaAlH₄. We have not measured this sample by diffraction, and cannot ascertain that bulk H/D exchange has occurred, however, it is clear that the pure NaAlH₄ surface after milling is amenable to molecular dissociation/recombination of H₂. The non-zero strain component in the pure milled NaAlH₄ diffraction lineshape, combined with the single crystalline nature of the powder grains strongly suggests that the strain component is of a non-correlated nature, as no grain boundary network exists. It is thus likely that the grain is moderately defected with either free edge or screw dislocations. The termination of free edge/screws on the powder grain surface may serve as dissociation/recombination sites for molecular H₂, by virtue of the extra energy stored as line tension in the dislocation cores. After the first thermal desorption and subsequent first absorption of hydrogen (with typical H cycling conducted up to 150 °C and 150 bar), the NaAlH₄ lineshape is considerably sharper, indicating that all the free microstructure has been annealed out. As such, the uncorrelated microstructure may provide a minor role during the first low temperature release of hydrogen before the NaAlH₄ phase is completely decomposed, however, in subsequent H cycles it is of no real significance. To eliminate the potential role of nanoscopic Al in dissociation/recombination of molecular H₂/and or bulk release of H, a $NaAlH_4 + 0.1Al (80 nm)$ sample was milled and stored in the glove box at ambient temperature, and followed over 1.5 years, to test if Al destabilized NaAlH₄. After 1.5 years, the diffraction patterns are identical, with only NaAlH₄ and Al present, with no indication of Na₃AlH₆. While we might expect a reduced effect for the larger 80 nm Al compared to the 20 nm Al in the surface embedded nano Al/a-Al₅₀Ti₅₀ composite, no bulk H is released at all, and it is a safe assumption that the a-Al₅₀Ti₅₀ phase is directly responsible for the ambient release of bulk H.

Considering the large amount of D/H exchange observed, and the obvious H₂ molecular dissociation/recombination properties at 23–50 °C, knowledge of the crystallisation temperature of the surface embedded nanoscopic a-Al₅₀Ti₅₀ phase is desirable from the point of view that H does not appear to be stored in it, nor travel through the a-Al₅₀Ti₅₀ bulk. Fig. 4 shows isochronal annealing of a PM only NaAlH₄+0.1TiCl₃ sample, over the temperature range 51-228 °C. Most of the H from NaAlH₄ is desorbed by 127 °C, and most of the H from Na₃AlH₆ by 203 °C. Crystalline Al_{1-x}Ti_x is observed to start forming at 177 °C, with a strong asymmetry on Al (111) evident by 203 °C. As most of the H has been released from the sample by 203 °C, it is clear that the a-Al₅₀Ti₅₀ matrix allows molecular H₂ recombination for almost the entire release of H from the sample, from both the NaAlH₄ and Na₃AlH₆ phases. The formation of crystalline $Al_{1-x}Ti_x$ phases from the a- $Al_{50}Ti_{50}$ matrix is not a crystallisation of the amorphous matrix itself, which is expected to crystallise in a single phase state at ca. $660 \degree C$ for $Al_{50}Ti_{50}$ [20]. Rather, the formation of ca. 4–25 nm Al₈₅Ti₁₅ crystallites observed in H cycled NaAlH₄ + xTiCl₃ [5] is consistent with local diffusion of Ti atoms from the a-Al₅₀Ti₅₀ matrix into the 2-20 nm pure Al crystallites. The growth of $c-Al_{1-x}Ti_x$ appears to be limited, with very close matching of the size ranges, Al 2–20 nm: $Al_{1-x}Ti_x$ 4–25 nm, and similar dislocation density in the 2–20 nm Al and 4–25 nm $Al_{1-x}Ti_x$ [5].

The annealing data from Fig. 4 also highlight another experimental difficulty for conducting HD scrambling experiments on the TiCl₃ enhanced NaAlH₄ system. It is stated in [16] that "H/D exchange is much faster than rehydrogenation of decomposed alanate". This statement alludes to the origins of the kinetic rate limiting feature for hydrogen absorption in the NaAlH₄+xTiCl₃ system, and implicitly assumes that molecular H₂ dissociation/recombination is not rate limiting, which appears consistent with the rate study in [12] indicating diffusion of AlH_x entities are the rate limiting step. There exist several problems with the HD interpretation from [16]: (i) the D₂/HD decay at 50 °C and 20 bar observed in [16] occurs due to the presence of an a-Al₅₀Ti₅₀ phase on the NaAlH₄ surface. Comparing the absorption rate to milled data is difficult as after the first thermal desorption to remove H, $c-Al_{88}Ti_{12} \leftrightarrow c-Al_{86}Ti_{14}$ forms [5] (as in Fig. 4) from the nanoscopic Al/Al₅₀Ti₅₀ composite, and the rate of HD scrambling may not be the same on these crystalline surfaces as the $a-Al_{50}Ti_{50}$ surface; (ii) the rate of HD scrambling is highly likely pressure/temperature (P/T) and mol% TiCl₃ dependent, and (iii) conducting HD scrambling at 50 °C and 20 bar are sufficient P/T conditions to hydride a H empty $NaAlH_4 + xTiCl_3$ sample, and as such two processes (H/D exchange and direct un-exchanged surface HD scrambling) are contributing to the final HD scrambling rate. Such features demonstrate that to

Fig. 5. HD scrambling of a starting 1 bar mixture of H_2 and D_2 on dehydrided PM NaAlH₄+0.1TiCl₃. A 1.19:2.00:0.95 mixture of H_2 :HD:D₂ is obtained after 7 days (normalised to HD), showing near classic equilibrium mixing according to H_2 +D₂ \leftrightarrow 2HD.

obtain the true exchange independent HD surface scrambling rate, it is necessary to conduct HD scrambling at P/T conditions at which the sample will not hydride (i.e., at pressures below the equilibrium plateau pressure), and after at least one thermal desorption has occurred to create crystalline $Al_{1-x}Ti_x$ phase from the Al/a-Al₅₀Ti₅₀ composite, so that H absorption rate and HD scrambling rate are referenced to the same $c-Al_{1-x}Ti_x$ phase. As the surface embedded $c-Al_{1-x}Ti_x$ phase does not change composition after ca. 2 H cycles [5], HD scrambling can be performed on twice hydrogen cycled H empty samples, from room temperature upwards at moderate H_2/D_2 pressures to obtain the H/D exchange independent temperature dependent surface only HD scrambling rate. Fig. 5 shows HD scrambling conducted on an isothermally desorbed PM NaAlH₄ + 0.1TiCl₃ sample, for a 1 bar mixture of H_2/D_2 at room temperature, conducted over 7 days. Classic equilibrium $H_2 + D_2 \leftrightarrow 2HD$ mixing is observed, demonstrating that $c-Al_{1-x}Ti_x$ (x < 0.25) phases formed during H cycling perform a classic H₂ dissociation/recombination function.

4. Concluding remarks

The nanoscopic Al/a-Al₅₀Ti₅₀ composite embedded on the surface of single crystalline NaAlH₄ powder grains allows the release of H from NaAlH₄ and subsequent molecular H₂ formation at ambient temperature over ca. 200 days. Isotopic H/D exchange observed over 6 days for PM NaAlD₄ + 0.04TiCl₃ under 20 bar H₂ at 50 °C indicates that the surface embedded nano Al/a-Al₅₀Ti₅₀ composite performs a molecular H₂ dissociation/recombination function, and facilitates bulk exchange of D with H. After the D/H exchange period, 58% of all unit cells are expanded by H to form the composition $NaAl(H_{0.56}D_{0.44})_4$. The mosaic of ca. 100 nm for $NaAl(H_{0.56}D_{0.44})_4$ indicates that long ranged diffusion of H/D is possible within the NaAlD₄ structure at 50 °C and 20 bar. Isochronal annealing of PM only NaAlH₄+0.1TiCl₃ shows that almost all H is released before crystalline Al₈₆Ti₁₄ is observed, demonstrating that the nano Al/a-Al₅₀Ti₅₀ composite performs the H release function during the first thermal desorption. A lack of hydrogen release from NaAlH₄ + 0.1Al (80 nm) over 1.5 years strongly suggests that a-Al₅₀Ti₅₀ is the phase that is functionally responsible for H release during the very first thermal desorption of milled NaAlH₄ + *x*TiCl₃. Ambient HD scrambling on post thermal desorbed PM NaAlH₄ + 0.1TiCl₃ shows near classic 1:2:1 equilibrium mixing according to H₂ + D₂ \leftrightarrow 2HD, indicating that both a-Al₅₀Ti₅₀ and c-Al₈₆Ti₁₄ perform a classic molecular H₂ dissociation/recombination function that unadulterated NaAlH₄ cannot. The Al_{1-x}Ti_x phases also provide a thermally stable sink for Ti, which subsequently provides a stable monolayer of Al_{1-x}Ti_x phase at the near surface NaAlH₄/Al_{1-x}Ti_x interface.

Our study serves as a model for TiCl₃ addition to NaAlH₄ from 2 points of view: (i) the addition of TiCl₃ to NaAlH₄ results in Ti containing phases embedded on the NaAlH₄ surface that are nanoscopic in dimension, and that are efficient at molecular dissociation/recombination of H₂, and (ii) the dispersion of these nanoscopic Ti containing phases on the NaAlH₄ surface implies that the interfacial area between $Al_{1-x}Ti_x$ phases and NaAlH₄ is only small, but greatly efficient at releasing hydrogen from the NaAlH₄ bulk, even at great distances from the surface where Ti is embedded. The surface location of Ti also highlights the importance of reducing the size of the NaAlH₄ bulk to reduce bulk limiting AlH₄ diffusion distances. Understanding of the near surface Al_{1-x}Ti_x/NaAlH₄ interface in promoting rate limited hydrogen release from the NaAlH₄ bulk is of utmost importance. The surface embedding of well distributed and isolated nanoscopic $Al_{1-x}Ti_x$ phases suggests that AlH₄ tetrahedra can only be perturbed in very limited numbers locally at the near surface $Al_{1-x}Ti_x/NaAlH_4$ interface, initiating a hydrogen release reaction which propagates into the NaAlH₄ bulk. Local charge imbalance of AlH₄⁻ units and Ti coordination in the Al_{1-x}Ti_x/NaAlH₄ interface is crucial to understanding how this reaction propagates from the surface into the bulk. High resolution TEM is the obvious tool to provide direct space images of this interface, however, electron beam induced evaporation of Na and H which destroys the interface precludes such an observation [21]. Density functional theory models of Ti substitution in the NaAlH₄ surface (slab models) may be relevant in this regard [22], and provide at least a simplistic picture of how Ti atoms may be locally coordinated by H in the $Al_{1-x}Ti_x/NaAlH_4$ interface.

Acknowledgements

This project has been funded by the Synchrotron Program of the Research Council of Norway. MPP thanks the staff of the Swiss–Norwegian Beam Line for providing experimental assistance and logistics during long-term attachments. The authors acknowledge Prof. C.M. Jensen for discussions on the nature of HD isotope scrambling in the TiCl₃ enhanced NaAlH₄ system, and facilitation of mass spectroscopy measurements.

References

- B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schuth, N. Spielkamp, A. Stark, J. Alloys Compd. 471 (2009) 383–386.
- [2] M.P. Pitt, M. Paskevicius, C.J. Webb, M.H. Sorby, S. Delleda, T.R. Jensen, B.C. Hauback, C.E. Buckley, E.Mac A. Gray, Int. J. Hydrogen Energy 36 (2011) 8403–8411.
- [3] L.H. Rude, T.K. Nielsen, D.B. Ravnsbaek, U. Bosenberg, M.B. Ley, B. Richter, L.M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Phys. Status Solidi A 208 (2011) 1754–1773.
- [4] D.B. Ravnsbaek, Y. Filinchuk, R. Cerny, T.R. Jensen, Z. Kristallogr. 225 (2010) 557–569.
- [5] M.P. Pitt, P.E. Vullum, M.H. Sørby, M.P. Sulic, C.M. Jensen, J.C. Walmsley, R. Holmestad, B.C. Hauback, Acta Mater. 56 (2008) 4691–4701.
- [6] Y. Suttisawat, V. Jannatisin, P. Rangsunvigit, B. Kitiyanan, N. Muangsin, S. Kulprathipanja, J. Power Sources 163 (2007) 997–1002.
- [7] C. Weidenthaler, A. Pommerin, M. Felderhoff, B. Bogdanovic, F. Schuth, Phys. Chem. Chem. Phys. 5 (2003) 5149–5153.
- [8] M.P. Pitt, P.E. Vullum, M.H. Sørby, D. Blanchard, M.P. Sulic, H. Emerich, M. Paskevicius, C.E. Buckley, J. Walmsley, R. Holmestad, B.C. Hauback, J. Alloys Compd. (2011), doi:10.1016/j.jallcom.2011.11.021.
- [9] J.P. Bastide, J.El. Hajri, P. Claudy, A.El. Hajbi, Synth. React. Inorg. Met. Org. Chem. 25 (1995) 1037-1047.
- [10] B.C. Hauback, H. Fjellvåg, O. Steinsvoll, K. Johansson, O.T. Buset, J. Jørgensen, J. Neutron Res. 8 (2000) 215–232.
- [11] B.A. Hunter, Comm. Powder Diffr. Newslett. 20 (1998) 21.
- [12] W. Lohstroh, M. Fichtner, Phys. Rev. B 75 (2007) 184106.
- [13] G. Streukens, B. Bogdanovic, M. Felderhoff, F. Schuth, Phys. Chem. Chem. Phys. 8 (2006) 2889–2892.
- [14] K. Gross, W. Luo, E. Majzoub, G. Roberts, S. Spangler, D. Dedrick D, T. Johnson, J. Chan, DOE FY2003, Progress Report, 2003.
- [15] B. Bogdonavic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle, J. Alloys Compd. 302 (2000) 36–58.
- [16] J.M. Bellosta von Colbe, W. Schmidt, M. Felderhoff, B. Bogdonavic, F. Schuth, Angew. Chem. Int. Ed. 45 (2006) 3663–3665.
- [17] K. Hashi, K. Ishikawa, K. Suzuki, K. Aoki, Mater. Trans. 43 (2002) 2734–2740.
- [18] S. Gomes, G. Renaudin, H. Hagemann, K. Yvon, M.P. Sulic, C.M. Jensen, J. Alloys Compd. 390 (2005) 305–313.
- [19] G. Majer, E. Stanik, L.E. Valiente Banuet, F. Grinberg, O. Kircher, M. Fichtner, J. Alloys Compd. 404-406 (2005) 738-742.
- [20] Z. Jun-Hong, H. Bai-yun, H. Yue-hui, Z. Ke-chao, L. yong, Trans. Nonferrous Met. Soc. China 12 (2002) 610-614.
 [21] P.E. Vullum, M.P. Pitt, J.C. Walmsley, B.C. Hauback, R. Homestad, J. Alloys Compd.
- 509 (2011) 281–289.
- [22] O.M. Løvvik, S.M. Opalka, Phys. Rev. B 71 (2005) 054103.